
ON THE SOLUTIONS OF SOME SYSTEMS OF DIFFERENCE
EQUATIONS
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Abstract. In this paper, we investihate the dynamical behavior of the posi-
tive solutions of the following system of di¤erence equations

un+1 =
aun�1

b+ cvpn�3w
p1
n�1

; vn+1 =
dvn�1

e+ fwqn�3u
q1
n�1

; wn+1 =
gwn�1

h+ Iurn�3v
r1
n�1

;

for n 2 N0; where the initial conditions u�i; v�i; w�i (i = 0; 1; 2; 3) are
non-negative real numbers and the parameters a; b; c; d; e; f; g; h; I; p; q; r are
positive real numbers.

1. Introduction

The theory of discrete dynamic of systems of di¤erence equations developed
greatly during the last thirty years of the twentieth century. One of the reasons for
this is a necessity for some techniques which can be used in investigating equations
arising in mathematical models describing real life situations in population biology,
economic, probability theory, genetics, psychology. See, for example, [2-8,10,12-16].
Cinar [1] investigated the periodicity of the positive solutions of the system

xn+1 =
1

yn
; yn+1 =

yn
xn�1yn�1

:

Kurbanli el al.[9] studied the system of two nonlinear di¤erence equation

xn+1 =
xn�1

ynxn�1 + 1
; yn+1 =

yn�1
xnyn�1 + 1

:

In this study, we investigate the dynamic behavior of the positive solutions of
the following system of di¤erence equations.
(1.1)

un+1 =
aun�1

b+ cvpn�3w
p1
n�1

; vn+1 =
dvn�1

e+ fwqn�3u
q1
n�1

; wn+1 =
gwn�1

h+ Iurn�3v
r1
n�1

; n 2 N0

where the initial conditions u�i; v�i; wi (i = 0; 1; 2; 3) are non-negative real num-
bers and the parameters a; b; c; d; e; f; g; h; I; p; q; r are positive real numbers.
Consider the di¤erence equation

(1.2) Xn+1 = H(Xn); n = 0; 1; ::: .

where Xn 2 Rn and H 2 C1[Rk+1; Rk+1]: Then the linearized equation associ-
ated with Eq.(1.2) is given by

Yn+1 = AYN ; n = 0; 1; :::;

Key words and phrases. system of di¤erence equations, stability, global behavior, periodic
solution.
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where A is the Jacobian matrix DH(X) of the function H evaluated at the
equilibruim X:
Theorem A [11]: Let X be an equilibruim point of Eq.(1.2) and assume that

H is a C1 function in Rk+1: Then the following statements are true:
(a) If all the eigenvalues of the Jacobian matrix DH(X) lie in the open unit

diskj�j < 1; then the equilibruim X of Eq.(1.2) is asymptotically stable.
(b) If at least one eigenvalues of the Jacobian matrix DH(X) has absolute value

greater than one, then the equilibruim X of Eq.(1.2) is unstable.
We will study the following cases:
Case 1. If p1 = q1 = r1 = 0:
Case 2. If p1 = q1 = r1 = 1:

2. Case 1 System (1.1) when p1 = q1 = r1 = 0:

We will investigate the stability of the two equilibrium points of System (1.1)
when p1 = q1 = r1 = 0: Then from System (1.1) we get

(2.1) un+1 =
aun�1

b+ cvpn�3
; vn+1 =

dvn�1
e+ fwqn�3

; wn+1 =
gwn�1

h+ Iurn�3
; n 2 N0:

By the change of variables un = (hI )
1
r xn; vn = ( bc )

1
p yn; wn = ( ef )

1
q zn: System

(2.1) can be rewritten as

(2.2) xn+1 =
�xn�1
1 + ypn�3

; yn+1 =
�yn�1
1 + zrn�3

; zn+1 =
yn�1
1 + xqn�3

; n 2 N0

where � = a
b ; � =

g
h ;  =

d
e :

In this section, we investigate the stability of the two equilibruim points of System
(2.2). When �; �;  2 (0; 1); it is easy to see that (x1; y1; z1) = (0; 0; 0) is the unique
equilibrium point of System (2.2). When �; �;  2 (1;1); the unique positive
equilibrium point of System (2.2) is given by (x2; y2; z2) = ((�1)

1
q ; (��1)

1
p ; (��

1)
1
r ):

Theorem 1. The following statements hold:

(i) If �; �;  2 (0; 1); then the equilibrium point (x1; y1; z1) = (0; 0; 0) of System
(2.2) is locally asymptotically stable.
(ii) If � 2 (1;1) or � 2 (1;1) or  2 (1;1); then the equilibrium point

(x1; y1; z1) = (0; 0; 0) of System (2.2) is unstable.
(iii) If �; �;  2 (1;1); then the positive equilibrium point (x2; y2; z2) = (( �

1)
1
q ; (�� 1)

1
p ; (� � 1) 1r ) of System (2.2) is unstable.

Proof. We will rewrite System (2.2) in the form

(2.3) Xn+1 = F (XN );
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where Xn = (xn; :::; xn�3; yn; :::; yn�3; zn; :::; zn�3)
T and the map F is given by

F

0BBBBBBBBBBBBBBBBBB@

t0
t1
t2
t3
s0
s1
s2
s3
k0
k1
k2
k3

1CCCCCCCCCCCCCCCCCCA

=

0BBBBBBBBBBBBBBBBBBB@

�t1
1+sp3
t0
t1
t2
�s1
1+kr3
s0
s1
s2
k1
1+tq3
k0
k1
k2

1CCCCCCCCCCCCCCCCCCCA

:

The linearized system of (2.3) about the equilibrium point X = (0; :::; 0)T is
given by

Xn+1 = JF (X0)Xn;

where

JF (X0) =

0BBBBBBBBBBBBBBBBBB@

0 � 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 � 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0  0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0

1CCCCCCCCCCCCCCCCCCA

:

Thus the characteristic equation of JF (X0) is given by

(2.4) �6(�2 � �)(�2 � �)(�2 � ) = 0:

Then we have the following:
(i) If �; �;  2 (0; 1); all the roots of the Eq.(2.4) lie inside the open unit disk

j�j < 1: So, the unique equilibrium point (x1; y1; z1) = (0; 0; 0) of System (2.2) is
locally asymptotically stable.
(ii) It is clearly that if � 2 (1;1) or � 2 (1;1) or  2 (1;1); then some

roots of Eq.(2.4) have absolute value greater that one. Thus, the equilibrium point
(x1; y1; z1) = (0; 0; 0) of System (2.2) is unstable.
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(iii) The linearized system of (2.3) about the positive equilibrium point (x2; y2; z2)
is given by Xn+1 = JF (X�;�;)Xn; where

xn =

0BBBBBBBBBBBBBBBBBB@

xn
xn�1
xn�2
xn�3
yn
yn�1
yn�2
yn�3
zn
zn�1
zn�2
zn�3

1CCCCCCCCCCCCCCCCCCA

; JF (x0) =

0BBBBBBBBBBBBBBBBBB@

0 1 0 0 0 0 0 0 0 0 0 A
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 B 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 C 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0

1CCCCCCCCCCCCCCCCCCA

;

where

A = �p(��)
p�1
p (� � 1) 1r
�

; B = �r(�)
1
q (� � 1) r�1r ;

�
; and C = �q(��)

1
p ( � 1)

q�1
q


:

The characteristic equation of JF (X�;�;) is given by

p(�) = �12 � 3�10 + 3�8 � �6 � rpq (�� 1)(� � 1)( � 1)
��

:

Now

p(1) = �rpq (�� 1)(� � 1)( � 1)
��

< 0 and lim
�!1

p(�) =1:

Then p(�) has at least one root in the interval (1;1). So, by Theorem A if
�; �;  2 (1;1); then the positive equilibrium point (x2; y2; z2) = (( � 1)

1
q ; (� �

1)
1
p ; (� � 1) 1r ) of System (2.2) is unstable. This completes the proof. �

Theorem 2. If �; �;  2 (0; 1); then the equilibrium point (x1; y1; z1) = (0; 0; 0) of
System (2.2) is globally asymptotically stable.

Proof. We proved in Theorem 1 that if �; �;  2 (0; 1); then the equilibrium point
(x1; y1; z1) = (0; 0; 0) of System (2.2) is locally asymptotically stable. Hence, it
su¢ ces to show that

lim
n!1

(xn; yn; zn) = (0; 0; 0):

We have from System (2.2) that

0 � xn+1 =
�xn�1
1 + ypn�3

� �xn�1; 0 � yn+1 =
�yn�1
1 + zrn�3

� �yn�1;

0 � zn+1 =
zn�1
1 + xqn�3

� zn�1; for n 2 N0:

Then it follows by induction that

(2.5) 0 � x2n�i � �nx�i; 0 � y2n�i � �ny�i; 0 � z2n�i � nz�i;

where x�i; y�i; z�i (i = 0; 1) are the initial conditions. Consequently, by taking
limits of inequalities in (2.5) when �; �;  2 (0; 1); we get lim

n!1
(xn; yn; zn) = (0; 0; 0):

This completes the proof. �
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Example 1. Figure (1) shows the global attractivity of the zero equilibrium point
x of System (2.2) for the values � = :9; � = :2;  = :5 and p = 2; q = :3; r = 5
whenever x�3 = 1:04; x�2 = 2:6; x�1 = 1:02; x0 = 3:04; y�3 = 1:3; y�2 = 3:9;
y�1 = :4; y0 = 1:2; z�3 = 1:5; z�2 = 2:3; z�1 = :9; and z0 = 0:006:

Figure (1)

Theorem 3. If � = � =  = 1; then every solution of System (2.2) tends a period
two solution.

Proof. We get from System (2.2)

x2n+1 � x2n�1 = �
x2n�1z

p
n�3

1 + zpn�3
� 0; y2n+1 � y2n�1 = �

y2n�1x
q
n�3

1 + xqn�3
� 0;

z2n+1 � z2n�1 = �
z2n�1y

r
n�3

1 + yrn�3
� 0:

and

x2n+2 � x2n = �
x2nz

p
2n�2

1 + zp2n�2
� 0; y2n+2 � y2n = �

y2nx
q
2n�2

1 + xq2n�2
� 0;

z2n+2 � z2n = �
z2ny

r
2n�2

1 + yr2n�2
� 0:

Thus, we get

x2n+1 � x2n�1; y2n+1 � y2n�1; z2n+1 � z2n�1; x2n+2 � x2n; y2n+2 � y2n;

and
z2n+2 � z2n:

The sequences f(x2n�1; y2n�1; z2n�1)g1n=�3 and f(x2n; y2n; z2n)g1n=�3 are non-
increasing. Hence, while the odd-index terms tend to one periodic point, the even-
index terms tend to another periodic point. This completes the proof. �

Theorem 4. Assume that � = � =  = 1; then every solution f(xn; yn; zn)g1n=�3
of System (2.2) converges to a period two solution. Moreover the sequence fxng
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converges to a period solution of the form

:::; ';  ; ';  ; :::;

also the sequence fyng converges to a period two solution

:::; ; �; ; �; :::;

and the sequence fzng converges to a period two solution

:::; �; �; �; �; :::;

and the solution has the form

f(0; 0; 0); ( ; �; �); (0; 0; 0); :::g:

Proof. We have from System (2.2)

xn+1 � xn�1 = �
xn�1y

p
n�3

1 + ypn�3
� 0; yn+1 � yn�1 = �

yn�1z
q
n�3

1 + zqn�3
� 0;

zn+1 � zn�1 = �
zn�1x

r
n�3

1 + xrn�3
� 0;

which imply that fxng converges to a period two solution

:::; ';  ; ';  ; :::;

also fyng converges to a period two solution

:::; ; �; ; �; :::;

and fzng converges to a period two solution

:::; �; �; �; �; ::: .

If we assume that

lim
n!1

x2n = '; lim
n!1

x2n+1 =  ; lim
n!1

y2n = ; lim
n!1

y2n+1 = �; lim
n!1

z2n = �;

and

lim
n!1

z2n+1 = �;

then we have

' =
'

1 + p
;  =

 

1 + p
;  =



1 + �r
; � =

�

1 + �r
; � =

�

1 + 'q
; � =

�

1 + 'q

which implies that  = � = ' = 0: Then the proof is completed. �

Example 2. Figure (2) shows that the solutions of System (2.2) tend to a period
two solution of System (2.2) for the values � = � =  = 1 and p = 3; q = 3; r = 3
whenever x�3 = 4; x�2 = 6; x�1 = 2; x0 = 4; y�3 = :3; y�2 = :9; y�1 = 4; y0 = 2;
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z�3 = :5; z�2 = 2:3; z�1 = :9; and z0 = 6:

Here we dell with the oscillation of the positive solutions of System (2.2) about
the equilibrium point (x2; y2; z2) = (( � 1)

1
q ; (�� 1)

1
p ; (� � 1) 1r ):

Theorem 5. Let �; �;  2 (0;1) and f(x2n; y2n; z2n)g1n=�3 be a positive solution
of System (2.2). Then, f(x2n; y2n; z2n)g1n=�3 oscillates about the equilibrium point
(x2; y2; z2). Moreover, with the possible exception of the �rst semicycle, every semi-
cycle has length one.

Proof. Assume that
(i) x�1; x�3 � x2; x0; x�2 < x2 or x�1; x�2 < x2; x�3; x0 � x2; y�1; y�3 � y2;

y0; y�2 < y2; z0; z�2 � z2; z�1; z�3 < z2
holds. Then we get

x1 =
�x�1
1 + yp�3

< x2; x2 =
�x0

1 + yp�2
� x2; x3 =

�x1
1 + yp�1

< x2; x4 =
�x2
1 + yp0

� x2

y1 =
�y�1
1 + zr�3

� y2; y2 =
�y0

1 + zr�2
< y2; y3 =

�y1
1 + zr�1

� y2; y4 =
�y2
1 + zr0

< y2

z1 =
z�1
1 + xq�3

< z2; z2 =
z0

1 + xq�2
� z2; z3 =

z1
1 + xq�1

< z2; z4 =
z2
1 + xq0

� z2

Then, the result follows by induction. (ii) x�1; x�3 < x2; x0; x�2 � x2 or
x�1; x�2 � x2; x�3; x0 < x2; y�1; y�3 < y2; y0; y�2 � y2; z0; z�2 < z2; z�1; z�3 �
z2: The proof of this case is similarly to case (i) will be omitted. �

In the following theorem, we show the existence of unbounded solutions for
System (2.2)

Theorem 6. If �; �;  2 (1;1); then System (2.2) possesses an unbounded solu-
tion.
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Proof. Assume that f(x2n; y2n; z2n)g1n=�3 be a solution of System (2.2) with x2n�3 <
x2; x2n�2 � x2; y2n�3 � y2; y2n�2 < y2; z2n�3 < z2; and z2n�2 � z2 for
n 2 N0:Then, we have

x2n+2 =
�x2n

1 + yp2n�2
� x2n; y2n+1 =

�y2n�1
1 + zr2n�3

� y2n�1; z2n+1 =
z2n�1
1 + xq2n�3

� z2n�1;

x2n+1 =
�x2n�1
1 + yp2n�3

< x2n�1; y2n+2 =
�y2n

1 + zr2n�2
< y2n; z2n+1 =

z2n
1 + xq2n�2

< z2n:

from which it follows that lim
n!1

(x2n; y2n�1; z2n�1) = (1;1;1) and lim
n!1

(x2n�1; y2n; z2n) =

(0; 0; 0):
This completes the proof. �

Example 3. Figure (3) shows that System (2.2) has unbounded solutions with the
values � = 1:02; � = 1:09;  = 1:05 and p = q = r = 3 whenever x�3 = 4; x�2 = 6;
x�1 = 2; x0 = 3; y�3 = 1:36; y�2 = 3; y�1 = 1; y0 = :4; z�3 = 2; z�2 = 1:25;
z�1 = 0:23; and z0 = 3:

3. Case 2 System (1.1) when p1 = q1 = 1:

Now we will investigate the stability of the two equilibrium points of System
(1.1) when p1 = q1 = r1 = 1: Then from System (1.1) we get
(3.1)

un+1 =
aun�1

b+ cvpn�3wn�1
; vn+1 =

dvn�1
e+ fwqn�3un�1

; wn+1 =
gwn�1

h+ Iurn�3vn�1
; n 2 N0
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By the change of variables un = (hI )
1
r xn; vn = ( bc )

1
p yn; wn = ( ef )

1
q zn: System

(3.1) can be rewritten as

(3.2) xn+1 =
�xn�1

1 + sypn�3zn�1
; yn+1 =

�yn�1
1 + tzrn�3xn�1

; zn+1 =
zn�1

1 + xqn�3yn�1

where � = a
b ; � =

d
e ;  =

g
h ; and s = (

e
f )

1
q ; t = (hI )

1
r ; k = ( bc )

1
p :

In this section, we investigate the stability of the two equilibrium points of System
(3.2). When �; �;  2 (0; 1); it is easy to see that (x1; y1; z1) = (0; 0; 0) is the unique
equilibrium point of System (3.2). When �; �;  2 (1;1); the unique positive
equilibrium point of System (3.2) is (x2; y2; z2) = ((

�1
k )

1
r+1 ; (��1s )

1
p+1 ; (��1t )

1
q+1 ):

Theorem 7. The following statements hold:

(i) If �; �;  2 (0; 1); then the equilibrium point (x1; y1; z1) = (0; 0; 0) of System
(3.2) is locally asymptotically stable.
(ii) If � 2 (1;1) or � 2 (1;1) or  2 (1;1); then the equilibrium point

(x1; y1; z1) = (0; 0; 0)of System (3.2) is unstable.
(iii) If �; �;  2 (1;1); then the positive equilibrium point (x2; y2; z2) of System

(3.2) is unstable.

Proof. We rewrite System (3.2) in the form

Xn+1 = F (Xn)

where Xn = (xn; :::; xn�3; yn; :::; yn�3; zn; :::; zn�3)
T and the map F is given by

F

0BBBBBBBBBBBBBBBBBB@

n0
n1
n2
n3
m0

m1

m2

m3

l0
l1
l2
l3

1CCCCCCCCCCCCCCCCCCA

=

0BBBBBBBBBBBBBBBBBBB@

�n1
1+smp

3 l1

n0
n1
n2
�m1

1+tlq3n1

m0

m1

m2
l1

1+knr3m1

l0
l1
l2

1CCCCCCCCCCCCCCCCCCCA

:

The linearized system of (3.3) about the equilibrium point X = (0; :::; 0)T is
given by

Xn+1 = JF (X0)Xn;
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where

JF (X0) =

0BBBBBBBBBBBBBBBBBB@

0 � 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 � 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0  0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0

1CCCCCCCCCCCCCCCCCCA

:

Thus the characteristic equation of JF (X0) is given by

(3.3) �6(�2 � �)(�2 � �)(�2 � ) = 0:
We have the following: (i) If �; �;  2 (0; 1);all roots of the characteristic equa-

tion (3.4) lie inside the open unit disk j � j< 1: So, the unique equilibrium point
(x1; y1; z1) = (0; 0; 0) of System (3.2) is locally asymptotically stable.
(ii) If � 2 (1;1) or � 2 (1;1) or  2 (1;1); then some roots of Eq.(3.4) have

absolute values greater than one. Thus, the equilibrium point (x1; y1; z1) = (0; 0; 0)
is unstable.
(iii) The linearized system of (3.3) about the positive equilibrium point (x2; y2; z2)

is given by
Xn+1 = JF (X�;�;)Xn:

where

Xn =

0BBBBBBBBBBBBBBBBBB@

xn
xn�1
xn�2
xn�3
yn
yn�1
yn�2
yn�3
zn
zn�1
zn�2
zn�3

1CCCCCCCCCCCCCCCCCCA

, JF (X�;�;) =

0BBBBBBBBBBBBBBBBBB@

0 A 0 0 0 0 0 B 0 C 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 D 0 0 0 E 0 0 0 0 0 F
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 G 0 H 0 0 0 I 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0

1CCCCCCCCCCCCCCCCCCA

;

where

A =
�t

1
q+1

t
1

q+1 + (s(�� 1)p)
1

p+1 (� � 1)
1

q+1

; B = �p�s
2

p+1 t
1

q+1 ( � 1) 1
r+1 (� � 1)

1
q+1 (�� 1)

p�1
p+1

k
1

r+1 (t
1

q+1 + (s(�� 1)p)
1

p+1 (� � 1)
1

q+1 )2
;

C = � �t
2

q+1 (s(�� 1)p)
1

p+1 ( � 1) 1
r+1

k
1

r+1 (t
1

q+1 + (s(�� 1)p)
1

p+1 (� � 1)
1

q+1 )2
;

D = � �k
2

r+1 (t(� � 1)q)
1

q+1 (�� 1)
1

p+1

s
1

p+1 (k
1

r+1 + (t(� � 1)q)
1

q+1 ( � 1) 1
r+1 )2

; E =
�k

1
r+1

k
1

r+1 + (t(� � 1)q)
1

q+1 ( � 1) 1
r+1

;
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F = ��qt
2

q+1 k
1

r+1
1

q+1 ( � 1) 1
r+1 (� � 1)

q�1
q+1 (�� 1)

1
p+1

s
1

p+1 (k
1

r+1 + (t(� � 1)q)
1

q+1 ( � 1) 1
r+1 )2

;

G = �rk
2

r+1 s
1

p+1 ( � 1)
r�1
r+1 (� � 1)

1
q+1 (�� 1)

1
p+1

t
1

q+1 (s
1

p+1 + (k( � 1)r) 1
r+1 (�� 1)

1
p+1 )2

;

H = � s
2

p+1 (k( � 1)r) 1
r+1 (� � 1)

1
q+1

t
1

q+1 (s
1

p+1 + (k( � 1)r) 1
r+1 (�� 1)

1
p+1 )2

;

and

I =
s

1
p+1

s
1

p+1 + (k( � 1)r) 1
r+1 (�� 1)

1
p+1

:

The characteristic equation of JF (X�;�;) is given by

p(�) = �12 � (A+ E + I)�10 + (EI +AE +AI)�8

�(CG+ FH +BD + CHD +AEI)�6 + (BDI +AFH + CGE)�4 �BFG:

Therefor

p(0) = �BFG < 0 and lim
�!1

p(�) =1:

Then p(�) has at least one root in the interval (1;1): So by Theorem A we say
that if �; �;  2 (0;1); then the positive equilibrium point (x2; y2; z2) of System
(3.2) is unstable. This completes the proof. �

Theorem 8. If �; �;  2 (0; 1); then the equilibrium point (x1; y1; z1) = (0; 0; 0) of
System (3.2) is globally asymptotically stable.

Proof. We proved in Theorem 7 that if �; �;  2 (0; 1); then the equilibrium point
(x1; y1; z1) = (0; 0; 0) of System (3.2) is locally asymptotically stable. Hence, it
su¢ ces to show that

lim
n!1

(xn; yn; zn) = (0; 0; 0):

We see from System (3.2) that, for n 2 N0

0 � xn+1 =
�xn�1

1 + sypn�3zn�1
� �xn�1; 0 � yn+1 =

�yn�1
1 + tzqn�3xn�1

� �yn�1;

0 � zn+1 =
zn�1

1 + kxrn�3yn�1
� zn�1:

Then it follows by induction that

(3.4) 0 � x2n�i � �nx�i; 0 � y2n�i � �ny�i; 0 � z2n�i � nz�i:

where x�i; y�i; z�i(i = 0; 1) are the initial conditions. Consequently, by taking
limits of inequalities in (3.5); we get lim

n!1
(xn; yn; zn) = (0; 0; 0): �

Example 4. Figure (4) shows the global attractivity of the zero equilibrium point x
of System (3.2) for the values � = :011; � = :827;  = :021, p = :003; q = 0:01283;
r = 0:343 and s = 1; t = 3; k = 2 whenever x�3 = 1:04; x�2 = 2:6; x�1 = 1:02;
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x0 = 3:04; y�3 = 1:3; y�2 = 3:9; y�1 = :4; y0 = 1:2; z�3 = 1:5; z�2 = 2:3; z�1 = :9;
and z0 = 0:006:

In the folowing theorem, we investigate the convergence of the period solutions
period two of System (3.2).

Theorem 9. If � = � =  = 1, then every solution of System (3.2) tends to a
period two solution.

Proof. We get from System (3.2) that

x2n+1 � x2n�1 = �
sx2n�1y

p
2n�3z2n�1

1 + syp2n�3z2n�1
� 0; y2n+1 � y2n�1 = �

ty2n�1z
q
2n�3x2n�1

1 + tzq2n�3x2n�1
� 0;

z2n+1 � z2n�1 = �
ky2n�1x

r
2n�3z2n�1

1 + kxr2n�3y2n�1
� 0

and

x2n+2 � x2n = �
sx2ny

p
2n�2z2n

1 + syp2n�2z2n
� 0; y2n+2 � y2n = �

ty2nz
q
2n�2x2n

1 + tzq2n�2x2n
� 0;

z2n+2 � z2n = �
ky2nx

r
2n�2z2n

1 + kxr2n�2y2n
� 0;

also

x2n+2 � x2n = �
sx2ny

p
2n�2z2n

1 + syp2n�2z2n
� 0; y2n+2 � y2n = �

ty2nz
q
2n�2x2n

1 + tzq2n�2x2n
� 0;

z2n+2 � z2n = �
ky2nx

r
2n�2z2n

1 + kxr2n�2y2n
� 0.

Thus we get

x2n+1 � x2n�1; y2n+1 � y2n�1; z2n+1 � z2n�1; x2n+2 � x2n; y2n+2 � y2n;
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and

z2n+2 � z2n:

That is , the sequences f(x2n�1; y2n�1; z2n�1)g1n=�3 and f(x2n; y2n; z2n)g1n=�3
are non-increasing. Hence, while the odd-index terms tend to one periodic point,
the even-index terms tend to another periodic point. This completes the proof. �

Example 5. Figure (5) shows that the solutions of (3.2) tend to a period two
solution of System (3.2) for the values � = � =  = 1; p = :3; q = :8; r = 3
and s = :09; r = 1:54; k = :922 whenever x�3 = 4; x�2 = 6; x�1 = 2; x0 = 3;
y�3 = 1:36; y�2 = 3; y�1 = 1; y0 = :4; z�3 = 2; z�2 = 1:25; z�1 = :23; and z0 = 3:

Example 6. Figure (6) shows that System (3.2) has an unbounded solution with
� = 1:02; � = 1:09;  = 1:05; p = 3; q = 3; r = 3 and s = :09; r = 1:54; k = :922
whenever x�3 = 4; x�2 = 6; x�1 = 2; x0 = 3; y�3 = 1:36; y�2 = 3; y�1 = 1;
y0 = :4; z�3 = 2; z�2 = 1:25; z�1 = :23; and z0 = 3:
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