ON THE SOLUTIONS OF SOME SYSTEMS OF DIFFERENCE
EQUATIONS

H. EL-METWALLY!, E.M. ELABBASY!*, AND A. ESHTIBA?

ABSTRACT. In this paper, we investihate the dynamical behavior of the posi-
tive solutions of the following system of difference equations
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for n € Np, where the initial conditions w_;,v_;,w—; (i = 0,1,2,3) are
non-negative real numbers and the parameters a,b,c,d,e, f,g,h,I,p,q,r are
positive real numbers.

1. INTRODUCTION

The theory of discrete dynamic of systems of difference equations developed
greatly during the last thirty years of the twentieth century. One of the reasons for
this is a necessity for some techniques which can be used in investigating equations
arising in mathematical models describing real life situations in population biology,
economic, probability theory, genetics, psychology. See, for example, [2-8,10,12-16].

Cinar [1] investigated the periodicity of the positive solutions of the system

1 Yn

Tny1 = —5 Yny1 = — -
Yn Tn—1Yn—1

Kurbanli el al.[9] studied the system of two nonlinear difference equation
L1 = L, Ynt1 = %771.
YnTn—1 +1 TnYn—1+1
In this study, we investigate the dynamic behavior of the positive solutions of
the following system of difference equations.
(1.1)

AUp—1 dUn,1 JWn—1
unJrl - D D1 7vn+1 - q q1 7wn+1 = 7, T , T S NO
b + CUp_3Wy 1 e+ fwn—3un—1 h + Iun—SUn—l

where the initial conditions u_;,v_;, w; (i = 0, 1,2, 3) are non-negative real num-
bers and the parameters a, b, ¢, d, e, f,g,h,I,p,q,r are positive real numbers.
Consider the difference equation

(1.2) Xpp1 = H(X,), n=0,1,...

where X,, € R" and H € C'[RF*! RFt1]. Then the linearized equation associ-
ated with Eq.(1.2) is given by

Yn+1 :AYN, 7’L=0,1,...,

Key words and phrases. system of difference equations, stability, global behavior, periodic
solution.
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where A is the Jacobian matrix DH(X) of the function H evaluated at the
equilibruim X.

Theorem A [11]: Let X be an equilibruim point of Eq.(1.2) and assume that
H is a C! function in R**!. Then the following statements are true:

(a) If all the eigenvalues of the Jacobian matrix DH(X) lie in the open unit
disk|A| < 1, then the equilibruim X of Eq.(1.2) is asymptotically stable.

(b) If at least one eigenvalues of the Jacobian matrix DH (X) has absolute value
greater than one, then the equilibruim X of Eq.(1.2) is unstable.

We will study the following cases:

Case 1. prl =q1 =T1= 0.

Case 2. If py=¢; =11 = 1.

2. Case 1 System (1.1) when p; =¢; =r; =0.

We will investigate the stability of the two equilibrium points of System (1.1)
when p; = g1 = r1 = 0. Then from System (1.1) we get

(21) gy = ot A W
. n+1 b_’_cvﬁ_gv n+1 €+fwz_3’ n+1 h—l—[ur 3
By the change of variables w,, = (%)%xn,vn = (b

(2.1) can be rewritten as

ALy — BYn— Yn—
(2.2) Tpt1 = #, Yn+1 = #, Znt1 = quv n € Ny
n—3

where o = 4,8 =2,y = 4.

In this section, we investigate the stability of the two equilibruim points of System
(2.2). When o, 8,7 € (0, 1), it is easy to see that (Z1,7;,71) = (0,0, 0) is the unique
equilibrium point of System (2.2). When «, 3,7 € (1,00), the unique positive
equilibrium point of System (2.2) is given by (Z2,7,,2Z2) = ((y— 1)3, (a— 1)%, (B—

1)7).
Theorem 1. The following statements hold:

(i) If o, B, € (0,1), then the equilibrium point (Z1,7;,%1) = (0,0, 0) of System
(2.2) is locally asymptotically stable.

(ii) f o € (1,00) or B € (1,00) or v € (1,00), then the equilibrium point
(Z1,71,2z1) = (0,0,0) of System (2.2) is unstable.

(iii) If o, B,y € (1,00), then the positive equilibrium point (T2,7,,Z2) = ((7 —
1)5, (o — 1)7,(8 — 1)7) of System (2.2) is unstable.

Proof. We will rewrite System (2.2) in the form

(2.3) Xnt1 = F(Xy),
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T L .
where X;, = (Tny ooy T3, Yny oy Yn—3s Zns - 2n—3)" and the map F' is given by

aty

to 1+s%
t1 to
to 1
t3 lo
Bs1

50 1+k%
F S1 _ S0
52 S1
53 So

ko 1Wftlg
ks "
3 ko

The linearized system of (2.3) about the equilibrium point X = (0,...,0)T is
given by

Xn+1 = JF(YO)Xnv

where

OO DD DODDODDODDODOO O OO
O OO OO OO oo o
OO OO OO OO o oo
OO OO DODDODDODOO O OO
OO R OO ODODDODODODOOo OO
O O OO O OO
— OO OO OO 0o oo oo
OO DODDODIDODDODDODOOOC OO

[ N e I e R s W e B e B e B e Wi e B o B =S S )
cNoNoNoNoNoNoloNeN =R
DO DD DO O R OO O
OO0 oCcoOO0OoOROO0OOO

Thus the characteristic equation of Jr(X() is given by
(2.4) AN =)\ = B)(\* =) =0.

Then we have the following:

(i) If a, B,y € (0,1), all the roots of the Eq.(2.4) lie inside the open unit disk
|A| < 1. So, the unique equilibrium point (Z1,7;,%1) = (0,0,0) of System (2.2) is
locally asymptotically stable.

(ii) It is clearly that if @ € (1,00) or B € (1,00) or v € (1,00), then some
roots of Eq.(2.4) have absolute value greater that one. Thus, the equilibrium point
(Z1,71,2Z1) = (0,0,0) of System (2.2) is unstable.
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(iii) The linearized system of (2.3) about the positive equilibrium point (Z2, ¥, Z2)
is given by X, 11 = Jp(Xa,8,4)Xn, where

o
—_

Tn
Tp—1
Tp—2
LTn—3

Yn
T, = Yn—1 \ JF(fO) _
Yn—2
Yn—3

Zn
Zn—1
Zn—2
Zn—3

oo ocoococoomoooo
OO0 OHOOOO
COoOO0OOHOODOOODOOOO
OO OO0 OOO
OCHOROOOOOOOO
== i e R el e B o Sl e S e B o)
N eoNoNeNoNeNoNoNoNoRolhN

eNoNooNoNoNol ol =N
CoOO0O0COoOrROOOOO
cocooQococoococoococoo

DO DD DO DODDODDODO O
OO OO OO OO O

r—1

1
r

where
A:_p(a_)%l(ﬁ_l) B:—T(W_)%(B_l) 2 and C:_q(a_)%(’Y—l)%.
[0 ﬂ 5

The characteristic equation of Jp (X, 5) is given by

P() = A2 8410 335 _ x6 _ ppgl@ = DWW DO =D
afy

Now

(e-DE-1Dr—-1)
afy

Then p(A) has at least one root in the interval (1,00). So, by Theorem A if

p(1) = —rpq <0 and lim p(}) = oo.

a, 8,7 € (1,00), then the positive equilibrium point (Za,7s,22) = ((v — 1)%7 (o —
1)%, (8 —1)7) of System (2.2) is unstable. This completes the proof. O

Theorem 2. If a, 3,7 € (0,1), then the equilibrium point (T1,7,,%1) = (0,0,0) of
System (2.2) is globally asymptotically stable.

Proof. We proved in Theorem 1 that if «, 8,7 € (0,1), then the equilibrium point
(T1,71,21) = (0,0,0) of System (2.2) is locally asymptotically stable. Hence, it
suffices to show that

nh_)néo(xnv Yn,s Zn) = (07 0, 0)

We have from System (2.2) that

QL1 BYn—1
0 < Zpp1=—2b <oz, g, 0< = ool 1
= n+1 1+yi_3f n—1 > Yn+l 1+Z;_375yn 1
0 < zpt1= Enot o YzZn—1, for n € Ny.
= 1_’_3:(71173 =
Then it follows by induction that
(2.5) 0<zop—i <"z, 0<ys—i <["y_i, 0< 20,5 <A 2,

where z_;,y_;,2—; (i =0,1) are the initial conditions. Consequently, by taking
limits of inequalities in (2.5) when o, 8,7 € (0,1), we get lim (z,,, yn, zn) = (0,0,0).
This completes the proof. (Il
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Example 1. Figure (1) shows the global attractivity of the zero equilibrium point
T of System (2.2) for the values o = 9,8 = 2,y =5andp=2,q=.3,r=5
whenever x_3 = 1.04, x_o = 2.6, x_1 = 1.02, xp = 3.04, y_3 = 1.3, y_o = 3.9,
y_1=4,yo=12,2_.3=1.5, 2.0 =23, z_1 = .9, and zy = 0.006.

| =]
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Figure (1)

a

Theorem 3. If o = =~ =1, then every solution of System (2.2) tends a period
two solution.

Proof. We get from System (2.2)

» q
T2n—12p_3 Yon—-1T,_3
Ton+1 — T2n—-1 = R <0, Y2nt+1 — Yon-1 = T L <0,
+z,_3 + T, _3
22n—1Yp—3
Zon41l — Rop—1 = *ﬁ <0.
n—
and
p q
L2nZop—2 _ YanZop_o <
Ttz ~ T = —T <0, Yant2 — Yon = B P 0,
+ 23,2 + T2
Z2ny§n72

Zon+42 — 22n

1 + y£n72
Thus, we get

Tont1 < Tan—1, Yontl < Yon—1, 22nt1 < 22n—1, Tont2 < Ton, Yont2 < Yon,

and
Zon+t2 < Zon.

The sequences {(T2n—1,Y2n—1,22an—1) 1o _5 and {(@an, Yan, 22n) } 52 _5 are non-
increasing. Hence, while the odd-index terms tend to one periodic point, the even-
index terms tend to another periodic point. This completes the proof. [l

Theorem 4. Assume that oo = 3 =y = 1, then every solution {(xn, Yn, 2n)} oo _5
of System (2.2) converges to a period two solution. Moreover the sequence {x,}
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converges to a period solution of the form

e O 0,

also the sequence {y,} converges to a period two solution
Y5 0,7, 0, ey

and the sequence {z,} converges to a period two solution
ooy Ay g Ay [y ey

and the solution has the form

{(0,0,0), (v, 48, 1), (0,0,0), ... }.
Proof. We have from System (2.2)

p q
. . . Tn—-1Yp_3 <0, y y _ Yn—12,_3
n+l — 4n-1 — ——— 7 p =Y, Intl " Yn—-1— """ "¢ =Y
1+ Yn—3 I+ Zn—3
T
Zn—1Tp_3
Zn4+1 — Zn—1 - P < 0,
1+ 4

which imply that {z,,} converges to a period two solution

b QO) w) ¢7w7 R

also {y,} converges to a period two solution

s 5;7,57 )

and {z,} converges to a period two solution
ey Ay by Ay iy e
If we assume that
lim x9, = ¢, lim zo,4+1 =¥, lim ya, =7, im yap41 =6, lim 29, = A,
n—oo n—oo n—oo n—oo n—oo
and
lim 22,11 = p,
n—oo

then we have

] 0 A
o=t = Y= 8= A= =t
14 ~P 1+ ~P 14+ A 14+ A 1+ @4 1+ @4
which implies that v = A = ¢ = 0. Then the proof is completed. (|

Example 2. Figure (2) shows that the solutions of System (2.2) tend to a period
two solution of System (2.2) for the valuesa =0 =~v=1andp=3,¢q=3,r=3
whenever x_3 =4, x_9=6,c_1 =2, 20 =4, y_3=.3,y—2=.9,y_1 =4, yo = 2,
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z_3=.0,2_0=23,2_1=.9, and z5 = 6.
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Figure (2)

Here we dell with the oscillation of the positive solutions of System (2.2) about
the equilibrium point (Z2,75,%2) = ((v — 1)%7 (a — 1)%, (B—1)7).

Theorem 5. Let o, 5,7 € (0,00) and {(Zan, Y2n, 22n) }°2_5 be a positive solution
of System (2.2). Then, {(Tan,Y2n, 22n) o> _5 oscillates about the equilibrium point
(T2,Tq,Z2). Moreover, with the possible exception of the first semicycle, every semi-
cycle has length one.

Proof. Assume that
(i) v_1,2-3 > Ta, 0,02 <Tp or x_1,T_3 < T2, T_3,T0 > T2, Y—1,Y—3 = Yo,
Yo, Y—2 < Y, 20,2—2 2 Z2, 2-1,2-3 < Z2
holds. Then we get
axr_q axo _ axy _ QT2

x1 1+y’13 T2, T2 1+y€2 = T2,T3 1447, T2, T4 1+yg = T2
By—1 _ Byo _ Byt _ By _

= > R = < s = 2 s = <
Y1 142, = 2, Y2 1+ 2, Yo, Y3 1tz Ya,Y4 1+ 25 2
V21 — Y20 —_ Y?1 _ YZ2 _
2= ———F < 29,89 = ——F— > 29,23 = ———— < Zo,24 = >z
1 1+$q_3 2, <2 1+.Z‘q_2_ 25 #3 1+xq_1 25 <4 1+x3_ 2

Then, the result follows by induction. (i) z_j,z_3 < Ta, xg,T_2 > Ty or
To1,T-2 2 T2, T-3,%0 < T2, Y—1,Y-3 < Y2, Y0,Y—2 = Yo, 20, 2—2 < Z2, 2—1,2-3 =
Zo. The proof of this case is similarly to case (i) will be omitted. O

In the following theorem, we show the existence of unbounded solutions for
System (2.2)

Theorem 6. If o, (5,7 € (1,00), then System (2.2) possesses an unbounded solu-
tion.
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Proof. Assume that {(2n, Yon, 22n) }52 _5 be a solution of System (2.2) with z3,,_35 <
T2, Ton—2 > T2, Yon-3 = Uas Yon—2 < Yo, Z2n-3 < Z2, and zz,_o > Zo for
n € Ng.Then, we have

r _ QTon > o,y _ BYan-1 >y 5 _ YZ2n—1 5
2n-+2 1+y129n_2 = L2ny Y2n+1 1+Z£n_3 = Y2n—1, 22n+1 1+xgn_3 = “2n—1,
2n+1 1+ygn_3 2n—1y Y2n+2 1+Zgn_2 2n “2n+1 1+$gn_2 21+
from which it follows that lim (Z2n, Y2n—1, 22n—1) = (00,00,00) and lim (Zop—_1, Yon, 22n) =
n—oo n—oo
(0,0,0).
This completes the proof. [

Example 3. Figure (8) shows that System (2.2) has unbounded solutions with the
values « = 1.02, 8 = 1.09,7 = 1.05 and p = q =r = 3 whenever x_3 =4, x_5 = 6,
T =2,20=3,y-3=136,y2=3,y1 =1,y = 4, z_3 =2, z_9 = 1.25,
z_1=0.23, and zy = 3.

BN T T T

il W |

LU
SO0 13

N

Figure (3)
3. Case 2 System (1.1) when p; =¢; = 1.

Now we will investigate the stability of the two equilibrium points of System
(1.1) when p; = ¢ = r1 = 1. Then from System (1.1) we get
(3.1)
AUp—1 dvn—l JWn—1

— Vi1 = Wpy1 = ——————— n €Ny
b+ cvh_sqw,_q’ e+ fwl _gun_q’ h+Iul_sv,_1’

Up+1 =
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By the change of variables u, = (4)7zn, v, = (2)?yn, w, = (F)72n. System
(3.1) can be rewritten as

QTp_1 BYn—1 VZn-1

3.2) «x =TT o - z Tty
(3.2) i R Yn+1 Tt o T Tl s

where a = 4,8 =2, y=4£ and s = (%)it = (%)%,k = (%)%

In this section, we investigate the stability of the two equilibrium points of System
(3.2). When «, 8,7 € (0, 1), it is easy to see that (Z1,7;,%1) = (0,0,0) is the unique
equilibrium point of System (3.2). When «, 58,7 € (1,00), the unique positive
(e52) 7, (B w).

equilibrium point of System (3.2) is (T2, Yo, Z2) = ((7;1)7i1
Theorem 7. The following statements hold:

(i) If o, B,y € (0, 1), then the equilibrium point (Z1,7,%1) = (0,0,0) of System
(3.2) is locally asymptotically stable.

(ii) f € (1,00) or B € (1,00) or v € (1,00), then the equilibrium point
(T1,71,21) = (0,0,0)of System (3.2) is unstable.

(iii) If o, 8,7 € (1, 00), then the positive equilibrium point (Ta, ¥y, Z2) of System
(3.2) is unstable.

Proof. We rewrite System (3.2) in the form
X71,+1 = F(Xn)

where X,, = (Ty, ooy T3, Yny +» Y35 Zns -» 2n—3) L and the map F is given by

ang

no 14+smbly
ny no
N9 ni
ns N2
Bma
mo T+tIn,
m m
F L= 0
ma mq
ms3 mo
lo _ b
1+knimy
l1 o
lo I
ls 12

The linearized system of (3.3) about the equilibrium point X = (0,...,0)7 is
given by

Xn+1 = JF(YO)XTM
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where

DO OO DODDODO OO OO
SO OO OoOHOWOoOOoOOoOOo
SO ODOH OO OOoO o oo
OO DD DO DODDODO OO oo
OO R OO ODODODODOOOoO oo
O O OO OO0 O
H O OO OO oo o oo
OO DD D DODDODDODO OO OO

[ M e N e Wi e Wl e B e Sl e B e Wil B e S S S )
eNoNoNoNoNoNoNeNol =R
DO DD OO O R OO O
OO0 ocococo~ROO0OO0COCO

o

Thus the characteristic equation of Jr(X() is given by
(3.3) M=)V =B (N =7) =0

We have the following: (i) If «, 3,7 € (0,1),all roots of the characteristic equa-
tion (3.4) lie inside the open unit disk | A |[< 1. So, the unique equilibrium point
(Z1,71,21) = (0,0,0) of System (3.2) is locally asymptotically stable.

(i) Ifa € (1,00) or € (1,00) or v € (1,00), then some roots of Eq.(3.4) have
absolute values greater than one. Thus, the equilibrium point (z1,7;,%1) = (0,0,0)
is unstable.

(iil) The linearized system of (3.3) about the positive equilibrium point (Z2, Ty, Z2)
is given by

X71,+1 = JF(Xa,,H,'y)Xn~

where
Tn 0 A 00O O0OODBUOCUODO
Tn1 1 00 00 0O0UOTOTO OO0 O
Tns 01 0000 0O0UO0OU OO O
Tns 001 00 00O0UO0UO0UO0 O
Un O DOOGOZET OTUOOO0 0 F
| yna - 100001 000UO0O0TO00
Xn = Yn—o2 JrXas) =10 0 0001000000 |
Yn—3 0000 O0DO0T1O0UO0UO0TO0 D0
Zn 000G OHOOGOTI 00
Zno1 00 000D O0O0TGO0T1UO0TUO0 0
Zn_2 00000 O0O0UO0GO0T1 00
Zn3 00000 O0O0UO0UO0UO0 10
where
1 2 1 1 1 p—1
A at w1 g pasTtE(y 1) (f - )T (a —1)r5
£ o+ (s(a = )T (B — 1) R + (s( = 1)1 (B = 7T)2
o At T (s(a — 1)7) 7 (y — 1) 7
R (67 + (s(a — 1)P) 7+ (8 = 1)7+1)2
b_ 1ﬂkrf1<t(ﬂ—1>%ﬁa—1>w e phrtt
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and
'}/5 p+1

I - 1 1 _1 -
71 (k{3 — )7 (- 1)

The characteristic equation of Jp(X 4 3,,) is given by

p(A) = M2 (A+E+ DN+ (EI+ AE + AD)X®
—(CG+FH+ BD +CHD + AEI)\° + (BDI + AFH + CGE)\* — BFG.

Therefor
p(0) = —BFG <0 and /\lim p(A) = 0.

Then p(A) has at least one root in the interval (1,00). So by Theorem A we say
that if a, 8,7 € (0,00), then the positive equilibrium point (Z2,7,,Z2) of System
(3.2) is unstable. This completes the proof. O

Theorem 8. If a, 3,7 € (0,1), then the equilibrium point (T1,7Y;,%1) = (0,0,0) of
System (8.2) is globally asymptotically stable.

Proof. We proved in Theorem 7 that if o, 8,y € (0,1), then the equilibrium point
(Z1,71,21) = (0,0,0) of System (3.2) is locally asymptotically stable. Hence, it
suffices to show that

lim (2, Yn, 2n) = (0,0,0).

n—0o0

We see from System (3.2) that, for n € Ny

ATp—1 Bynfl
0 < zx = < az,_-1, 0< = < _
> n+1 1 T Syfl_32n_1 ~ n—1, = Yn+1 1 +tZZ_3xn—1 >~ 5yn 1
Zn—
0 < zpp1 = TEn-t < YZp-1.

Lk, _gyn1
Then it follows by induction that

(3.4) 0<2om—i <a"2_;,0 <yop—i < B"Y_i,0 < 295 < V"2
where ©_;,y_;,2_;(i = 0,1) are the initial conditions. Consequently, by taking

limits of inequalities in (3.5), we get lim (Zn, Yn, 2n) = (0,0,0). O

Example 4. Figure (4) shows the global attractivity of the zero equilibrium point T
of System (3.2) for the values « = .011, 8 = .827, v = .021, p = .003, ¢ = 0.01283,
r=20343 and s =1, t = 3, k = 2 whenever x_3 = 1.04, x_o = 2.6, x_1; = 1.02,
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To = 304, Yy—3 = 13, Y—o = 39, Yy-1 = .4, Yo = 12, Z_3 = 15, Z_2 = 23, Z_1 = .9,
and zg = 0.006.

33 T — T T T — T T

! —y

Figure (4)

In the folowing theorem, we investigate the convergence of the period solutions
period two of System (3.2).

Theorem 9. If o = 8 = v = 1, then every solution of System (3.2) tends to a
period two solution.

Proof. We get from System (3.2) that

P

$T2n—1Y2n—3%2n—1
- P

1+ sy, _322n-1

q
tY2n—129y_3T2n—1
- q
1+ tzy, _3Tan—1

T2n+1 — T2n—1

<0, Yont1 — Yon—1 = <0,

kyon—125,_322n—1

Zop41 — Z2n—1 <0
1+ kxh, _syon—1
and
STonlyh oz tyonzd ox
_ 2nYaon_2%2n < _ Y2n 29y, _oT2n <
Tong2 —Top = ————p5—— <0, Yopqo —Yon = —7——g—— <0,

1+ SYb. _9Zon 1+ tzd _oTon

kaniﬁgnszzn
Zopy2 — 22 = —————— <0,
1+ kx2n72y2n
also
b t q
. z ST2nYoy_2%2n <0 y y Y2nZoy_2T2n
2n+2 — 42n = 7 p - >U UYon+2 —Yon = — 7 g .
14 sy5,_9%on 1+ 1t25,,_9Ton
kyan§n7222n
Zopy2 — 22 = —————— < 0.
1+ kan—2y2n

Thus we get

Tont1l < Ton—1, Yontl S Yon—1, 22n41 < Z2n—1, T2nt2 < Ton, Y2nt2 < Yon,
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and
Zon42 < Zon.

That is , the sequences {(z2n—1,Y2n—1, 22n—1) }ne—s and {(Ton, Yon, 22n) e _3
are non-increasing. Hence, while the odd-index terms tend to one periodic point,
the even-index terms tend to another periodic point. This completes the proof. [

Example 5. Figure (5) shows that the solutions of (3.2) tend to a period two
solution of System (8.2) for the values « = 8 =~v=1,p=.3,q= .8, r =3
and s = .09, r = 1.54, k = 922 whenever x_3 =4, x_9 =6, x_1 = 2, g = 3,
Yy—3 = 136, Y—o = 3, Yy—1 = 1, Yo = .4, Z_3 = 2, Z_9 = 125, Z_1 = 23, and zZ0 = 3.

Example 6. Figure (6) shows that System (3.2) has an unbounded solution with
a=102,=109,v=105,p=3,¢q=3,r=3 and s = .09, r = 1.54, k = .922
whenever x_3 = 4, x_9 =6, x_1 = 2, g = 3, y_3 = 1.36, y_2 = 3, y_1 = 1,
Yyo=.4,2.3=2,2_9=1.25 21 =.23, and 2y = 3.

[ T e e, S — ErT—r————r———

| 1
M M
ol 1.””' I Il'|'|||||||'

H 1}l |
llnmfll Illl!lI '|'|IJ”'I'||||'|\|| | |||I'|I "nul)l“,'ll I'I"lIII | l‘ ) I|||I||II | I|| |I I||

&
—

0 0 0 ¥ n 2 Lo

&t

2 &L

Figure (5) Figure (6)

References
[1] C. Cinar," on the positive of the difference equation system x,; = yi,

Yn+1 = m Appl Math Comput. 158, 303-305 (2004). doi: 10.1016/j.amc.2003.08.073.

[2] D. Clark, M. R. S. Kulenovi ¢ and J. F. Selgrade, Global asymptotic behavior
of a two-dimensional difference equation modelling competition, Nonlinear Analysis,
52(2003), 1765-1776.

[3] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, Some properties and
expressions of solutions for a class of nonlinear difference equation, Utilitas Math-
ematica, 87(2012), 93-110.

[4] E.M.Elabbasy, H.N.Agiza, A.A.Elsadany and H. El-Metwally, "The Dynamics
of Triopoly Game with Heterogeneous Players", International Journal of Nonlinear
Science, 3 (2007), 83-90.

g j ‘ ity




14 H. EL-METWALLY!, E.M. ELABBASY!*, AND A. ESHTIBA?

[5] H. El-Metwally, M. M. El-Afifi, On the Behavior of some Extension Forms of
some Population Models, Chaos Solitons & Fractals, 36 (2008) 104-114.

[6] H. El-Metwally, On the Structure and the Qualitative Behavior of an Eco-
nomic Model, Advances in Difference Equations, 2013, 2013:169 doi:10.1186/1687-
1847-2013-169.

[7] H. El-Metwally, I. Yalcinkaya and C. Cinar, Global stability of an economic
model, Utilitas Mathematical, 95(2014), 235-244.

[8] M. Gumus and Y. Soykan, Global character of a six-dimensional nonlinear
system of difference equations, Discrete Dynamics in Nature and Society, Article
ID 6842521, (2016).

[9] A. S. Kurbanli, C. Cinar and I. Yalcinkaya, On the behavior of positive
solutions of the system of rational difference equations ©,+1 = p—1/(Yn®n-1 + 1),
Ynt+1 = Yn—1/(TnYn—1 + 1), Mathematical and Computer Modelling, 53(5-6)(2011),
1261-1267.

[10] M. R. S. Kulenovi¢ and G. Ladas. Dynamics of second order rational rational
difference equations. Chapman & Hall/CRC. Boca Raton, FL, 2002. With open
problems and conjectures.

[11] V. L. Koci¢ and G. Ladas, Global Behavior of Nonlinear Difference Equations
of Higher Order with Applications, Mathematics and Its Applications, vol. 256,
Kluwer Academic, Dorderecht, 1993.

[12] G. Papaschinopoulos, G. Ellina and K. B. Papadopoulos, Asymptotic behav-
ior of the positive solutions of an exponential type system of difference equations,
Applied Mathematics and Computation, 245(2014), 181-190

[13] D. T. Tollu, Y. Yazlik and N. Taskara, On the solutions of two special
types of Riccati difference equation via Fibonacci numbers, Advances in Difference
Equations, Article ID 174, (2013).

[14] D. T. Tollu, Y. Yazlik and N. Taskara, On fourteen solvable systems of
difference equations, Applied Mathematics and Computation, 233(2014), 310-319.

[15] I. Yalcinkaya, On the global asymptotic stability of a second-order system of
difference equations, Discrete Dynamics in Nature and Society, vol. 2008, Article
ID 860152, 12 pages.

[16] L. Yang and J. Yang, Dynamics of a system of two nonlinear difference
equations, International Journal of Contemporary Mathematical Sciences, 6(2011),
209-214.

IMATHEMATICS DEPARTMENT, FACULTY OF SCIENCE, MANSOURA UNIVERSITY EGYPT, 2MATHEMATICS
DEPARTMENT, FACULTY OF EDUCATION, TRIPOLI UNIVERSITY, LIBYA
E-mail address: 'eaash69@yahoo.com, '*emelabbasy@mans.edu.eg & 2amnaeshtiba@gmail.com.

)



